您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)
第1页(共9页)绝密★启用前2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)考试时间:100分钟;命题人:小高考课题研究小组题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共15小题,每小题4分,共60分.)1.集合A={0,1,2},B={x|﹣1<x<2},则A∩B=()A.{0}B.{1}C.{0,1}D.{0,1,2}2.已知数列{an}是等比数列,且a1=,a4=﹣1,则{an}的公比q为()A.2B.﹣C.﹣2D.3.命题“∀x>1,”的否定是()A.∀x>1,B.∀x≤1,C.∃x0>1,D.∃x0≤1,4.过点P(2,﹣1)且倾斜角为的直线方程是()A.x﹣y+1=0B.x﹣2y﹣﹣2=0C.x﹣y﹣3=0D.x﹣2y++1=05.若a,b是异面直线,b,c是异面直线,则a,c的位置关系为()A.相交、平行或异面B.相交或平行C.异面D.平行或异面6.平行四边形ABCD中,=,=,则+=()A.B.C.D.7.直线y=x被圆(x﹣1)2+y2=1所截得的弦长为()A.B.1C.D.28.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒第2页(共9页)黄豆,则它落在三角形ABC内(阴影部分)的概率是()A.B.C.D.9.若如图是一个几何体的三视图,则这个几何体是()A.圆锥B.棱柱C.圆柱D.棱锥10.甲乙两人下棋,已知两人下成和棋的概率为,甲赢棋的概率为,则甲输棋的概率为()A.B.C.D.11.函数f(x)=lnx+2x﹣1零点的个数为()A.4B.3C.2D.112.设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.313.为了得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度第3页(共9页)14.sin27°cos18°+cos27°sin18°的值为()A.B.C.D.115.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<f()<f()B.f()<f(1)<f()C.f()<f()<f(1)D.f()<f(1)<f()第Ⅱ卷(非选择题)评卷人得分二.填空题(共4小题,每小题4分,共16分.)16.在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),则A,B两点间的距离为.17.已知函数f(x)=loga(x﹣1)﹣2(a>0且a≠1),则函数恒过定点.18.一条光线从A(﹣,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为.19.已知F1,F2为椭圆C的两个焦点,P为C上一点,若|PF1|,|F1F2|,|PF2|成等差数列,则C的离心率为.评卷人得分三.解答题(共2小题,每小题12分,共24分.)20.如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.第4页(共9页)21.如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的茎叶图,(1)计算该运动员这10场比赛的平均得分;(2)估计该运动员在每场比赛中得分不少于40分的概率.第5页(共9页)2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)参考答案与试题解析一.选择题(共15小题)1.解:∵A={0,1,2},B={x|﹣1<x<2}∴A∩B={0,1}故选C2.解:由,故选C.3.解:因为全称命题的否定是特称命题,所以命题“∀x>1,”的否定是∃x0>1,故选:C.4.解:∵斜率k=tan=1,∴过点P(2,﹣1),且倾斜角为的直线方程为:y+1=x﹣2,即x﹣y﹣3=0,故选:C5.解:因为a,b是异面直线,b,c是异面直线,则a,c的位置关系可能平行,可能是异面直线,也可能是相交直线.故选A.6.解:平行四边形ABCD中,=,=,故=+=+=+,故选:A.7.解:由圆的方程得:圆心坐标为(1,0),半径r=1,∵圆心到直线x﹣y=0的距离d=,∴直线被圆截得的弦长为2=.故选C.8.解:圆O的直径AB=2,半径为1,第6页(共9页)所以圆的面积为S圆=π•12=π;△ABC的面积为S△ABC=•2•1=1,在圆O内随机撒一粒黄豆,它落在△ABC内(阴影部分)的概率是P==.故选:D.9.解:∵圆柱的正视图和侧视图都是矩形,俯视图是一个圆,∴该几何体是圆柱.故选C.10.解:∵甲乙两人下棋,两人下成和棋的概率为,甲赢棋的概率为,∴甲输棋的概率为:P=1﹣=.故选:C.11.解:在同一坐标系内分别作出函数y=lnx与y=1﹣2x的图象,易知两函数图象有且只有一个交点,即函数y=lnx﹣1+2x只有一个零点.故选D.12.解:x,y满足约束条件的可行域如图:,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(3,0),所以z=x+y的最大值为:3.故选:D.13.解:∵y=sin(2x﹣)=sin2(x﹣),∴为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点向右平行第7页(共9页)移动个单位长度.故选:D.14.解:sin27°cos18°+cos27°sin18°=sin(27°+18°)=sin45°=.故选:A.15.解:∵函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,∴函数y=f(x)在[2,4]上单调递减且在[0,4]上函数y=f(x)满足f(2﹣x)=f(2+x)即f(1)=f(3)∵f()<f(3)<f()∴f()<f(1)<f()故选B二.填空题(共4小题)16.解:∵在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),∴A,B两点间的距离:|AB|==5,故答案为:5.17.解:根据对数函数的恒过点性质:可得:x﹣1=1,解得:x=2.那么:y=)=loga1﹣2=﹣2.则函数恒过定点为(2,﹣2).故答案为(2,﹣2).18.解:由反射定律可得点点A(﹣,0)关于y轴的对称点A′(,0)在反射光线所在的直线上,再根据点B(0,1)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程为,即2x+y﹣1=0,故答案为:2x+y﹣1=0.第8页(共9页)19.解:∵|PF1|,|F1F2|,|PF2|成等差数列,∴2|F1F2|=|PF1|+|PF2|=2a,即4c=2a,∴e==.故答案为:.三.解答题(共2小题)20.解:(Ⅰ)证明:连接BD.在正方体AC1中,对角线BD∥B1D1.又因为E、F为棱AD、AB的中点,所以EF∥BD.所以EF∥B1D1.(4分)又B1D1⊂平面CB1D1,EF⊄平面CB1D1,所以EF∥平面CB1D1.(7分)(Ⅱ)因为在正方体AC1中,AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1,所以AA1⊥B1D1.(10分)又因为在正方形A1B1C1D1中,A1C1⊥B1D1,所以B1D1⊥平面CAA1C1.(12分)又因为B1D1⊂平面CB1D1,所以平面CAA1C1⊥平面CB1D1.(14分)21.解:(1)由已知中茎叶图可得该篮球运动员在某一赛季10场比赛的得分分别为:16,24,27,33,34,36,39,41,44,46,第9页(共9页)故该运动员这10场比赛的平均得分为:(16+24+27+33+34+36+39+41+44,46)=34;(2)由(1)可得:运动员在每场比赛中得分不少于40分的场次共有3场,故该运动员在每场比赛中得分不少于40分的概率P=.
本文标题:2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)
链接地址:https://www.777doc.com/doc-2225076 .html