您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 结构化学第二章练习题
1第二章原子的结构和性质1、(南开99)在中心力场近似下,Li原子基态能量为_____R,Li原子的第一电离能I1=____R,第二电离能I2=_____R。当考虑电子自旋时,基态Li原子共有_____个微观状态。在这些微观状态中,Li原子总角动量大小|MJ|=__________。(已知R=13.6eV,屏蔽常数0.0s1s2s,1s1s,2s)注意屏蔽常数的写法解:Li1s22s122122-30.37.291sZERRRn2223-0.852-0.42252sERR12215.0025LissEEER电离能:1()-()AAeIEAEA222()-()AAeIEAEA第一电离能:1LiLiIEE12sLiEE120.4225sIER第二电离能:22231LiER12sLiEE29(27.29)5.58IRRR2122:12LiSSS个微观状态11022SlJ133||(1)222JMJJ2(Be原子的第一和第二电离能如何求?)2、(南开04)若测量氢原子中电子的轨道角动量在磁场方向(Z轴方向)的分量值,当电子处在下列状态时,值的测量值为的几率分别是多少?2221(1)(2)(3)pxPZP解:2(1)10.5pxZmm的几率为22112111()2px2(2)00PZZmm的几率为21(3)11PZmm的几率为3、在下表中填写下列原子的基谱项和基支项(基支项又称基谱支项,即能量最低的光谱支项)464346433/25/29/22233:44AsMnCoOSSFPSSFPAsSPP原子基谱项基谱支项43/252565/272749/22443302255:3402239:34322:22LSJSMndSdLSJSCodSdLSJFOSPP32112LSJP4、(南开04)3(1)用原子单位制写出H2+体系的Schrodinger方程(采用固定核近似)。解:21111(2RababErr)(2)Ti原子基态的电子组态为1s22s22p63s23p63d24s2,给出Ti原子基态所有的光谱项(),其中光谱基项为()解:闭壳层对L,S贡献为零,求d2组态的谱项即可d2组态有10!/(2!*8!)=45种微观状态,可求出:131313:,,,,:SPDFGF光谱项光谱基项(3)氢原子中,函数112222102113112所描述的状态中,①其能量的平均值是()看波函数是否是归一化的。222111113()2()422372ERRR或用求物理量平均值的方法也可。②角动量为2出现的几率为(1)③已知H原子某状态的xz平面电子云如图所示,则该状态所对应的量子数n=(3),l=(1),m=(0).4因为含有1个径向节面,1个角节面,3p态,在z轴分布5、(南开03)(1)写出H2,He+的薛定谔方程(采用固定核近似)(2)给出下列元素的基光谱支项①V(4F3/2)②Mn(6S5/2)解:325233:3432255:34022VdSLSJMndSLSJ(3)是氢原子波函数,下列函数那些是2ˆˆˆ,,ZHMM的本征态?如果是,请写出本征值。如不适,请填否解:221223ˆˆˆ001-09SSdZR否6、(南开02年)(1)He+离子处在41S2PZ表征的状态时,测量He+离子的能量,可能的测量值有①(-2)a.u②(-0.5)a.u等两种数值:这两种数值出现的几率为①(1/17)②(16/17)。在此状态下He+离子能量的平均值为(-10/17)(a.u)5解:220.5a.u.nZERRn归一化:12141717spz2222121162110()()1712172217E(2)Co原子的基支项(或称基光谱支项)为4F9/2,在此基支项中,Co原子有多少个微观状态?(10),在此状态下Co原子的总轨道角动量|ML|(||12LM)(a.u)。Co原子的总自旋角动量|MS|(15||4LM)(a.u)。Co原子的总角动量|MJ|(99||4JM)(a.u)。解:有(2J+1)种微观状态,L=3,S=3/2,J=9/2,所以有10种微观状态||(1)1LMLL原子单位=(3)某类氢原子轨道电子云的角度分布图和径向密度图如下,该轨道是(2s)解:从角度分布图可判断为s型轨道,从径向密度图看有1个径向界面,所以为2s轨道。7、求归一化的氢原子轨道121022113311CCC所描述的能量E的平均值()及角动量Z分量Mz的平均值()6解:222121022113311222123111449EcEcEcERcRcRc2222212323(0)()()zMccccc8、(南开93年)(1)在核固定近似下,[He-H]+分子离子体系中,电子运动的Schrodinger方程为(用原子单位制表示)解:与H2类似221212121211221112()22aabbabErrrrrR(2)若有氢原子的波函数22211pzpxabc其中(a,b,c)是氢原子哈密顿算符ˆH的本征函数,(a,c)是角动量Z分量算符ˆZM的本征函数(3)对1s12s1电子组态,其总自旋角动量大小可为(,02),总自旋角动量Z分量可为(,0)(4)给出V(原子序数为23)原子的光谱基项3243/2(34,)dSF9、(南开05)(1)氢原子3pz轨道ˆH算符本征值为(A)a.uA-1/18B-1/9C-2/3D-1/2(1R=0.5a.u.)(2)氢原子3pz轨道径向分布图[D(r)]为(B)7解:径向界面数n-l-1=1个,最大峰出现在离核远的位置(3)Fe的电子组态为[Ar]3d64s2,其光谱基项为(a)a.5D4b.3P2c.5D0d.1S6解:S=2,最大L=2,所以最大J=4(4)下列光谱项不属于p2组态的是(a)a.3Sb.3Pc.1Dd.1S10、(南开89年)(1)写出p1组态的光谱项和光谱支项(2P;2P3/2,2P1/2)(2)写出p2组态的光谱项和光谱支项(1D,1D2;3P,3P2,3P1,3P0;1S,1S0)(3)推测2p13p1组态的光谱项()解:2p13p1为非同科电子,不受Pauli原理限制l1=1,l2=1,L=2,1,0,s1=1/2,s2=1/2,S=1,03D,3P,3S,1D,1P,1S811、(南开94)(1)氢原子2PZ电子云等密度曲线图中标出A,B,C,D四点,请按电子几率密度由大到小的顺序列出四点,并用大于或等于号(ACB=D)(2)氢原子2s态的径向分布图中标出a,b,c,d四点。请按包含相应点的单位厚度球壳内电子出现的几率由大到小的顺序列出这四点。(dcab)。(3)属于第二周期的两种元素的基谱项分别为(1)3P0(2)3P2,指出各基谱项所对应的原子(1)(C)(2)(O)解:9021,1101101LSLMPPC3或3O半充满前J小的是基谱支项(C),半充满后J大的是基谱支项(O)12、(南开92)按能量由低到高的顺序写出S原子基态的全部光谱支项,硫原子电子组态共有多少个微观状态?解:S:3S23P4,与p2组态相同,但能量顺序相反3P3,3P1,3P0,1D2,1S1(严格讲只能确定基谱项)15种微观状态13、(北京师范大学94)(1)多电子体系Schrodinger方程中n个电子排斥势能项可写成(B)22222¸111.2....222ijijijijijijijijijijeeeeeABCDErrrrr,(2)下列那个光谱项不属于p1d1组态(a)a.1Sb.1Dc.1Pd.3Fe.3D解:l1=1,l2=2,L=3,2,1,s1=1/2,s2=1/2,S=1,03F,1F,3D,1D,3P,1P14、(北京师范大学96)多电子原子光谱项3F的简并度(包含的微观状态数)是(B)A.7B.21C.2D.3解:S=1,L=3(2S+1)(2L+1)=2110或J=4,3,2,3F4,3F3,3F2各有(2J+1)个微观状态15、(北京师范大学95)在下列函数中,算符ˆMz的本征函数是(B)2211221121-1PyPxABCD16、(北京师范大学2000)氢原子轨道的角度部分是sincoscos,且径向有一个节面。求E,M2,Mz解:函数中有sincos,所以l=2,有cosm,所以m=+1,-1有一个径向节面,n-l-1=1,所以n=42216or16ZERMM17、(清华)(1)根据原子光谱选择原则,那组跃迁能发光(C,E)3213333/21/2322122225/21/211APSBFPCPPDDPEDP解:多电子原子光谱的选率△S=0;△L=0,±1;△J=0,±1(J=0→J’=0除外)(2)已知氢原子0122230011()(2)42rasreaa,求该原子轨道径向分布函数极大值和节点的半径是多少?几率密度的极大值半径是多少?解:径向分布函数222()sDrr先求节点半径:D(r)=011022222300011()()(2)016202rasrDrrreaarrra和不是节点是节点极值点:()0Drr(极大值和极小值点)0223002323000123()11()[(2)]016216121(8)00(((raDrrrerararrrraaarrrrrrr不是极值点极大值)极小值)极大值)几率密度的极值:22()0sr002223002200102011()[(2)]0162(68)02=4rasrarerarararaerara解得(极小值),(极大值)1218.(南京大学2000)指出H原子在下列三组情况中,两种状态的物理性质有何不同A.Ψ100和Ψ200能量不同B.Ψ200和Ψ210角动量不同C.Ψ211和Ψ21-1角动量在z轴分量不同(或角动量取向不同)19(南京大学2001)①对于O原子基态电子组态,能量最低的光谱支项为(c)a.1S1b.3P1c.3P2d.3P1②H原子3pz轨道的径向节面数为(b)a.0b.1c.2d.3③完成下列计算氢原子1s轨道上电子距原子核的平均距离为多少?0321011!1(),rannxnnsexedxaa解:1300032110223300003400011ˆ()sin11()sin113()226()22rraassrarrdererdrddaddredraaaa20.(军事科学院)①某原子壳层电子组态为4s13d1原子光谱项为(3D,1D)基谱项为(3D)21.(军事科学院92)试证明下列波函数对电子的交换作用是反对称的1(1)1(1)1(2)1(2)ssss证明:1(1)1(1)(1,2)1(2)1(2)ssss交换电子121(2)1(2)1(1)1(1)(1,2)(1,2)1(1)1(1)1(2)1(2)sss
本文标题:结构化学第二章练习题
链接地址:https://www.777doc.com/doc-2137513 .html