您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 第八章多元函数微分学复习题1
第八章多元函数微分学复习题一、选择题1.设sinxezy,则yxz2().(A)sinxey(B)sinxeeyy(C)cosxey(D)cosxey3.设),(yxzz由方程xyzzyx2222确定,则xz()(A)xyzxzy(B)xzyyzx(C)xyzyxz(D)xyzxyz4.设xy)y,x(f,则f(x,y)在(0,0)点处().(A)连续但偏导数不存在(B)不连续也不存在偏导数(C)连续且偏导数存在(D)不连续但偏导数存在5.xxysinlim0x()(A)不存在(B)0(C)1(D)26.设(12)(23),yzx则zx()(A)2(12)(23)yyx(B)(12)(23)ln(23)yxx(C)23(12)(23)yyx(D)(12)3(23)ln(23)yxx7.设,),(22yxxyyxf则)2,1(f()(A)31(B)31(C)3(D)38.二元函数33)(3yxyxz的极值点是()(A)(1,2)(B)(1,-2)(C)(-1,2)(D)(-1,-1)9.设)ln(),(22yxxyxf,其中0yx,则),(yxyxf()(A))ln(2yx(B))ln(yx(C))ln(ln21yx(D))ln(2yx10.已知xyez,则yzyxzx().(A)0(B)1(C)-1(D)211.设),0(1sin)(),(222222yxyxyxyxf则),(lim00yxfyx().(A)0(B)1(C)无穷大(D)不存在12.设xylnz,则xz().(A)x1(B)2xy(C)2x1(D)x113.设xyez,则dz=()(A)dxexy(B))(xdyydxexy(C)xdyydx(D))(dydxexy14.设2ln()zxy,则zy().(A)22yxy(B)22yxy(C)22yxy(D)2xxy15.函数),(yxfz在点),(00yx连续是),(yxf在该点处()(A)可微的充分条件(B)可微的必要条件(C)偏导数存在的必要条件(D)偏导数存在的充分条件16.设fxyxyxyxy(,)32231,则fx'(,)32=()(A)59(B)56(C)58(D)5516.若0),(00yxfx,0),(00yxfy。则),(yxf在),(00yx处有()(A)连续且可微(B)连续但不一定可微(C)可微但不一定连续(D)不一定可微也不一定连续17.二元函数)0,0(),(,0)0,0(),(,),(22yxyxyxxyyxf在点(0,0)处()(A)连续,偏导数存在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)不连续,偏导数不存在18.设5(,)ln(2)3yfxyxx,则'(1,0)yf()(A)ln2(B)56(C)65(D)-220.设22),(yxyxxyf,则),('),('yxfyxfyx()(A)y22(B)y22(C)yx22(D)yx2221.函数)y,x(fz在点(x0,y0)处具有偏导数是它在该点存在全微分的().(A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件(D)既非充分又非必要条件22.2200limxyxyxy().(A)0(B)1(C)21(D)不存在24.设,)sin(xyeyxz则(0,0)zy().(A)1(B)2(C)0(D)2125.设函数yxyxyxfarcsin)1(),(则fx(x,1)的值是()(A)0(B)1+221xx(C)2211xxy(D)126.若偏导数值fx(x0,y0)=fx(x0,y0)=0,则点(x0,y0)必为f(x,y)的()(A)极值点(B)驻点(C)连续点(D)零点27.),ln(yxxz则22yz()(A)2)(yxx(B)2)(yxx(C)yxx(D)yxx28.函数)1ln(4arcsin2222yxyxz的定义域是()(A)22{(,)|14}xyxy(B)22{(,)|14}xyxy(C)22{(,)|14}xyxy(D)22{(,)|14}xyxy30.设,xyez则yxz2().(A))1(xyexy(B))1(yexy(C))1(xexy(D)xyexy31.设)cos(2yxz,则yz().(A))sin(2yx(B))sin(22yxx(C))sin(2yx(D))sin(22yxx33.42200limyxxyyx().(A)0(B)1(C)21(D)不存在38.设yezxsin,则yxz2().(A)yexcos(B)yeexxsin(C)yeexxcos(D)yexcos二、填空题1.设)sin(2xyz,则xz.2.极限00lim24xyxyxy.3.设,),arctan(xeyxyz求dxdz.4.设,lnyxz则全微分dz_________.5.设,23yexyxz则dz_______________.6.2201)ln(limyxexyyx_______________.7.极限0011limxyxyxy.8.设yzxyx,则全微分dz=.9.极限22101limyxxyyx.10.设yxez2,而2sin,xtyt,则全导数dtdz.11.设,3sinyxu则yu.12.极限113lim00xyxyyx.13.设yxzsin)(ln,则yz.14.设22yx)y,x(f,则),(yxfxy.15.设函数2xyzxe,则zzxy.16.已知2,18是3323zxxyay的驻点,则a.17.02sin()limxyxyx______________.18.设,yxz则全微分dz______________.19.函数22yyxz的全微分为____________.20.二元函数33)(3yxyxz的极值点是_____________.21.设)ln(2xyz,则dz.22.函数yxz的定义域为.23.设)cos(2yxz,则xz.24.设三元函数22yxzu,则全微分du.25.设zyxzyx32)32sin(2,则xz.26.2244yxyxz的驻点为.27.设yxxyz,则dz.28.设xyz,则全微分dz__________________.29.xyyxyx1cos)(lim00____________.30.极限22101limyxxyyx.31.设zxyxey322,则dz=.32.设3sin()zxy,则__________________yxz2.33.设,),(22yxyxyxf则)2,1(f________________________.34.设,53),(22yxyxxyyxf则),(yxf.35.若函数632),(22byaxyxyxyxf在点)1,1(处取得极值,则常数_____________,ba.36.设yxez2,而txsin,3ty,则dtdz.37.设,),,(222zxyzxyzyxf则)1,0,0(xxf.38.函数)1ln(22yxz,当2,1yx时的全微分)2,1(dz.39.设xyxyu,则2uxy=.40.设dzyxz,)lnln(则全微分.41.设22yx)y,x(f,则)2,1(xyf=.42.设)32ln(),(xyxyxf,则)0,1('xf.43.yyxyx)1(lim1____________.44.设2232yxyxz,则dz=_____________.45.设方程xyzzyx232确定隐函数),,(yxfz则xz.46.已知边际成本()100Cxx¢=-,当产量由10x=增加到30x=时,则应增加的成本数是.47.已知边际成本2()31050Cxxx¢=-+,固定成本(0)500C=,则总成本函数是.48.已知边际收益(),(0)0RxabxR¢=-=,则收益函数是.三、解答题1.设vuz,其中,,22xyvyxu求yzxz,.2.讨论函数2233234zxxyyxy的极值.3.设方程yzzxln确定),(yxfz,yzxz,.4.设vezucos,其中,,xyvxyu求yzxz,.5.设,lnxyz,求yxz2.6.设,22yxxz求22xz.7.设,444yxeeyxz求2222,yzxz.8.设,)2(2xyyxz求全微分dz9.设),yx(sinz2求yxz2.10.设xyzez,求xz,yz.11.设22yxlnz,求yz2x.13.设2xyzeze,求xz,yz.14.yxyz)1(,求yzxz,.16.求函数)2(),(22yyxeyxfzx的极值.17.设,arctanxyz求yxz2.18.设)lnln(yxz,求yxz2.19.设方程xyzzyx232确定),(yxfz,求yzxz,.20.设zxyx()arctan,求全微分dz.21.已知方程zezyx2确定二元隐函数),(yxzz,求yzxz,.23.求函数27933xyyxz的极值.25.求函数yzx的二阶偏导数yxz2.26.求由方程2222zyxxyz所确定的函数),(yxzz在点)1,0,1(处的偏导数值.27.设3(sin),xzxy求,zzxy.28.设22,xzxy求,zzxy.33.设,,,arctanvuyvuxxyz求,zzuv.34.设方程333axyzz确定),(yxfz,求yzxz,.35.求表面积为2a而体积最大的长方体的体积.38.设xxyzsin)3(,求yzxz,39.设yxzln,求yxz2.40.设)(cos)sin(2xyxyz,求,zzxy.41.求函数22)(4),(yxyxyxf的极值.44.求函数yxyxyxyxf2),(22的极值.45.设函数),(yxzz由方程1coscoscos222zyx所确定,求yzxz,.46.设zyxexyze,求xz,yz.47.设xyezz,求yzxz,.48.求函数3322(,)339fxyxyxyx的极值.49.设2222,sin,xyzuezxy求,uuxy.50.,)(lnyxz求yxz2.51.设方程06333xyzzyx确定),(yxfz,求yzxz,.四、综合题1.设22lnyxz,试证:02222yzxz.2.设)xy(Fxxyz2,其中)u(F为可导函数.求证:2zyzyxzx.3.设),(2222xyyxfz,f具有连续的偏导数,试证明:0yzxxzy5.设)yx(fyz22,其中)u(f为可导函数.求证:2yzyzy1xzx1.6.设方程zyxzyx32)32sin(2确定),(yxfz证明:1
本文标题:第八章多元函数微分学复习题1
链接地址:https://www.777doc.com/doc-2086261 .html