您好,欢迎访问三七文档
1第七篇立体几何与空间向量专题7.05空间直角坐标系与空间向量【考试要求】1.了解空间直角坐标系,会用空间直角坐标系刻画点的位置;2.借助特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式;3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;4.掌握空间向量的线性运算及其坐标表示;5.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.【知识梳理】1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作OA→=a,OB→=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=π2,则称a与b互相垂直,记作a⊥b.②非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.2(2)空间向量数量积的运算律:①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示加法a+b(a1+b1,a2+b2,a3+b3)减法a-b(a1-b1,a2-b2,a3-b3)数量积a·ba1b1+a2b2+a3b3共线a=λb(b≠0,λ∈R)a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模|a|a21+a22+a23夹角〈a,b〉(a≠0,b≠0)cos〈a,b〉=a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b23【微点提醒】1.在平面中A,B,C三点共线的充要条件是:OA→=xOB→+yOC→(其中x+y=1),O为平面内任意一点.2.在空间中P,A,B,C四点共面的充要条件是:OP→=xOA→+yOB→+zOC→(其中x+y+z=1),O为空间任意一点.3.向量的数量积满足交换律、分配律,即a·b=b·a,a·(b+c)=a·b+a·c成立,但不满足结合律,即(a·b)·c=a·(b·c)不一定成立.4.若向量α的投影向量是γ,则向量α-γ与向量γ垂直,当向量γ与向量α起点相同时,终点间的距离最小.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)空间中任意两非零向量a,b共面.()(2)对任意两个空间向量a,b,则a·b=0,则a⊥b.()(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.()(4)若a·b0,则〈a,b〉是钝角.()3【教材衍化】2.(选修2-1P97A2改编)如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若AB→=a,AD→=b,AA→1=c,则下列向量中与BM→相等的向量是()A.-12a+12b+cB.12a+12b+cC.-12a-12b+cD.12a-12b+c3.(选修2-1P118A6改编)已知a=(cosθ,1,sinθ),b=(sinθ,1,cosθ),则向量a+b与a-b的夹角是________.【真题体验】4.(2018·济宁一中月考)在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是()A.垂直B.平行C.异面D.相交但不垂直45.(2019·北京四中月考)已知a=(2,3,1),b=(-4,2,x),且a⊥b,则|b|=________.6.(2019·杭州二中月考)O为空间中任意一点,A,B,C三点不共线,且OP→=34OA→+18OB→+tOC→,若P,A,B,C四点共面,则实数t=________.【考点聚焦】考点一空间向量的线性运算【例1】如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设AA1→=a,AB→=b,AD→=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:(1)AP→;(2)MP→+NC1→.【规律方法】(1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.提醒空间向量的坐标运算类似于平面向量中的坐标运算.5【训练1】在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量OA→,OB→,OC→表示MG→,OG→.考点二共线定理、共面定理的应用【例2】已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法求证:(1)E,F,G,H四点共面;(2)BD∥平面EFGH.【规律方法】(1)证明空间三点P,A,B共线的方法①PA→=λPB→(λ∈R);②对空间任一点O,OP→=xOA→+yOB→(x+y=1).(2)证明空间四点P,M,A,B共面的方法6①MP→=xMA→+yMB→;②对空间任一点O,OP→=xOM→+yOA→+zOB→(x+y+z=1);③PM→∥AB→(或PA→∥MB→或PB→∥AM→).(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.【训练2】如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足AM→=kAC1→,BN→=kBC→(0≤k≤1).(1)向量MN→是否与向量AB→,AA1→共面?(2)直线MN是否与平面ABB1A1平行?考点三空间向量的数量积及其应用多维探究角度1数量积的坐标运算【例3-1】已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(1)求以AB,AC为边的平行四边形的面积;7(2)若向量a分别与AB→,AC→垂直,且|a|=3,求a的坐标.角度2数量积的线性运算【例3-2】(经典母题)如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:(1)EF→·BA→;(2)EG→·BD→;【迁移探究1】本例的条件不变,求证:EG⊥AB.8【迁移探究2】本例的条件不变,求EG的长.【迁移探究3】本例的条件不变,求异面直线AG和CE所成角的余弦值.【规律方法】1.利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2.空间向量的数量积可解决有关垂直、夹角、长度问题.(1)a≠0,b≠0,a⊥b⇔a·b=0;(2)|a|=a2;(3)cos〈a,b〉=a·b|a||b|.【训练3】如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.9(1)求AC1的长;(2)求证:AC1⊥BD;(3)求BD1与AC夹角的余弦值.【反思与感悟】1.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.其中合理选取基底是优化运算的关键.2.向量的运算有线性运算和数量积运算两大类,运算方法有两种,一种是建立空间坐标系,用坐标表示向量,向量运算转化为坐标运算,另一种是选择一组基向量,用基向量表示其它向量,向量运算转化为基向量的运算.【易错防范】1.在利用MN→=xAB→+yAC→①证明MN∥平面ABC时,必须说明M点或N点不在面ABC内(因为①式只表示MN→与AB→,AC→共面).2.求异面直线所成角,一般可转化为两向量夹角,但要注意两种角范围不同,注意两者关系,合理转化.3.找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.【分层训练】【基础巩固题组】(建议用时:40分钟)10一、选择题1.(2019·烟台模拟)已知向量a=(-3,2,5),b=(1,x,-1),则a·b=2,则x的值为()A.3B.4C.5D.62.(2019·黄冈模拟)已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于()A.32B.-2C.0D.32或-23.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则AE→·AF→的值为()A.a2B.12a2C.14a2D.34a24.如图,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA与BC所成角的余弦值为()A.3-225B.2-26C.12D.325.若{a,b,c}是空间的一个基底,且向量p=xa+yb+zc,则(x,y,z)叫向量p在基底{a,b,c}下的坐标.已知{a,b,c}是空间的一个基底,{a+b,a-b,c}是空间的另一个基底,一向量p在基底{a,b,c}下的坐标为(4,2,3),则向量p在基底{a+b,a-b,c}下的坐标是()11A.(4,0,3)B.(3,1,3)C.(1,2,3)D.(2,1,3)二、填空题6.如图所示,在四面体OABC中,OA→=a,OB→=b,OC→=c,D为BC的中点,E为AD的中点,则OE→=________(用a,b,c表示).7.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈CM→,D1N→〉的值为________.8.正四面体ABCD的棱长为2,E,F分别为BC,AD中点,则EF的长为________.三、解答题9.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=AB→,b=AC→.(1)若|c|=3,且c∥BC→,求向量c.(2)求向量a与向量b的夹角的余弦值.1210.如图,在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是棱AB,BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系Oxyz.(1)写出点E,F的坐标;(2)求证:A1F⊥C1E;(3)若A1,E,F,C1四点共面,求证:A1F→=12A1C1→+A1E→.【能力提升题组】(建议用时:20分钟)11.有下列命题:①若p=xa+yb,则p与a,b共面;②若p与a,b共面,则p=xa+yb;③若MP→=xMA→+yMB→,则P,M,A,B共面;④若P,M,A,B共面,则MP→=xMA→+yMB→.其中真命题的个数是()13A.1B.2C.3D.412.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=2,AF=1,M在EF上,且AM∥平面BDE.则M点的坐标为()A.(1,1,1)B.23,23,1C.22,22,1D.24,24,113.(2019·郑州调研)已知O点为空间直角坐标系的原点,向量OA→=(1,2,3),OB→=(2,1,2),OP→=(1,1,2),且点Q在直线OP上运动,当QA→·QB→取得最小值时,OQ→的坐标是__________.14.如图,正△ABC的边长为4,CD为AB边上的高,E,F分别是AC和BC边的中点,现将
本文标题:专题7.5-空间直角坐标系与空间向量---2020年高考数学一轮复习对点提分(文理科通用)(原卷版)
链接地址:https://www.777doc.com/doc-1510214 .html