您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版数学九年级上册第四章-《图形的相似》重点题型归纳
1阶段强化专题训练专题一:平行线分线段成比例常见应用技巧类型一证比例式技巧1中间比代换法证比例式1.如图,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB.(1)求证:BCDEABAD;(2)若AD:DB=3:5,求CF:CB的值.技巧2等积代换法证比例式2.如图,在△ABC中,D是AB上一点,E是△ABC内一点,DE∥BC,过D作AC的平行线交CE的延长线于F,CF与AB交于P.求证:PBPAPFPE.技巧3等比代换法证比例式3.如图,在△ABC中,DE∥BC,EF∥CD,求证:ADAFABAD.类型2证线段相等技巧4等比过渡证线段相等(等比例过渡法)4.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥BA交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.类型3证比例和为1技巧5同分母的中间比代换法5.如图,已知AC∥FE∥BD.求证:1BCBEADAE2专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是()A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE交于点E.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.方法3利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE.方法4利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.3专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度2过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度3过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证:BP:CP=BD:EC.训练角度4过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD.作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:4全章整合提升密码专训一:证比例式或等积式的技巧名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,试证明:AB·DF=BC·EF.技巧2三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.技巧3构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.技巧4等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.技巧5两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.求证:BFBE=ABBC.9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:5(1)△AMB∽△AND;(2)AMAB=MNAC.技巧6等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.技巧7等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.6专训二巧用“基本图形”探索相似条件名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型2.相交线型3.子母型4.旋转型训练角度1平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.训练角度2相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE与△ABC相似吗?请说明理由.训练角度3子母型3.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,E为AC的中点,ED的延长线交AB的延长线于点F.求证:ABAC=DFAF.训练角度4旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.7专训三利用相似三角形巧证线段的数量和位置关系名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE:CE=BF:CF.求证:AD=DB.类型2证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12BC.4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.训练角度2证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.类型2证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.8.如图,已知矩形ABCD,AD=13AB,点E,F把AB三等分,DF交AC于点G,求证:EG⊥DF.8专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型3三角形的内接正形问题(方程思想)3.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边QM在BC上,其余两个顶点P,N分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:DP:BQ=PE:QC.(2)在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF,分别交DE于M,N两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.9专训五:图形的相似中的五种热门考点名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一:比例线段及性质1.下列各组长度的线段,成比例线段的是()A.2cm,4cm,4cm,8cmB.2cm,4cm,6cm,8cmC.1cm,2cm,3cm,4cmD.2.1cm,3.1cm,4.3cm,5.2cm2.若a2=b3=c4=d7≠0,则a+b+c+dc=________.3.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,则支撑点C到端点A的距离约为________.(5≈2.236,结果精确到0.01)考点二:平行线分线段成比例4.如图,若AB∥CD∥EF,则下列结论中,与ADAF相等的是()A.ABEFB.CDEFC.BOOED.BCBE5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,以AC为边向三角形外作正方形ACDE,连接BE交AC于F,若BF=3cm,则EF=________.6.如图,在△ABC中,AM∶MD=4∶1,BD∶DC=2∶3,求AE∶EC的值.考点三相似三角形的性质与判定7.已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则△ABC与△DEF的面积之比为()A.4:3B.3:4C.16:9D.9:168.
本文标题:北师大版数学九年级上册第四章-《图形的相似》重点题型归纳
链接地址:https://www.777doc.com/doc-1433283 .html