您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2019-2020年高中数学6.3.2《方差与标准差》教案苏教版必修3
2019-2020年高中数学6.3.2《方差与标准差》教案苏教版必修3学习要求1.体会方差与标准差也是对调查数据的一种简明的描述,要求熟练记忆公式,并能用于生产实际和科学实验中;2.体会方差与标准差对数据描述中的异同。【课堂互动】自学评价案例有甲乙两种钢筋现从中各抽取一个样本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?【分析】在平均数相同的情况下,观察上述数据表,发现乙样本的最小值100低于甲样本的最小值110,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.在平均数相同的情况下,比较两组数据的极差能大概判断它们的稳定程度.极差:我们把一组数据的最大值与最小值的差称为极差.从数据表上可以看出,乙的极差较大,数据较分散;甲的极差小,数据较集中,这就说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.这时,我们考虑用更为精确的方法——方差.在上一课时中,学习了总体平均数的估计,其中提到平均数是“最理想”近似值的缘由.同样我们可以考虑每一抗拉强度与平均抗拉强度的离差,离差越小,稳定性就越高.那么,怎样来刻画一组数据的稳定程度呢?在上一课时中,设n个实验值(=1,2,…,n)的近似值为,那么它与这n个实验值(=1,2,…,n)的离差分别为,,…,.由于上述离差有正有负,故不宜直接相加.可以考虑将各个离差的绝对值相加,研究||+||+…+||取最小值时的值.但由于含绝对值,运算不太方便,所以考虑离差的平方和,即()2+()2+…+()2,当此和最小时,对应的的值作为近似值,因为()2+()2+…+()2=22221212)(2nnaaaxaaanx,所以当时离差的平方和最小,故可用作为表示这个物理量的理想近似值,称其为这n个数据,,…,的平均数或均值,一般记为.在上述过程中,可以发现,一组数据与其平均数的离差的平方和最小,考虑用与其平均数的离差的平方和来刻画一组数据的稳定程度是可行的.即本案例中,可用各次抗拉强度与平均抗拉强度的差的平方和表示.由于比较的两组数据的容量可能不同,因此应将上述平方和除以数据的个数,我们把由此所得的值称为这组数据的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差开方后的值称为这组数据的标准差.标准差也可以刻画数据的稳定程度.一般地,设一组样本数据,其平均数为,则称为这个样本的方差,其算术平方根为样本的标准差,分别简称样本方差,样本标准差.根据上述方差计算公式可算得甲、乙两个样本的方差分别为50和165,故可认为甲种钢筋的质量好于乙种钢筋.【精典范例】例1甲、乙两种冬水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定:品种第1年第2年第3年第4年第5年甲110120130125120125135125135125乙115100125130115125125145125145甲9.89.910.11010.2乙9.410.310.89.79.8【解】甲品种的样本平均数为10,样本方差为222)101.10()109.9()108.9[(])102.10()1010(22=0.02乙品种的样本平均数也为10,样本方差为222)108.10()103.10()104.9[(5])108.9()107.9(22=0.24例2为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差天数151~180181~210211~240241~270271~300301~330331~360361~390灯泡数1111820251672【分析】用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命。【解】各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为%20255%18225%11195%1165%2375%7345%16315%25285=267.9将各组中值对于此平均数求方差得22)268195(11)268165(1[100122)268255(20)268225(1822)268315(16)268285(25])268375(2)268345(722=2128.60(天2)故标准差约为答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天。例3(1)求下列各组数据的方差与标准差(结果精确到0.1):甲123456789乙111213141516171819丙102030405060708090丁35791113151719(2)比较计算结果,各组方差和标准差的关系是什么?【解】(1)甲:6.7,2.6;乙:6.7,2.6丙:666.7,25.8丁:26.7,5.2(2)乙的方差与标准差分别与甲的相同;丙的方差是甲的方差的100倍,标准差是甲的10倍;丁的方差是甲的方差的4倍,标准差是甲的2倍例4某市共有50万户居民,城市调查队按千分之一的比例进行入户调查,抽样调查的结果如下家庭人均月收入(元)工作人员数管理人员数20560102005080204015合计400100(1)一般工作人员家庭人均月收入的估计及其方差的估计;(2)管理人员家庭人均月收入的估计及其方差的估计(3)平均数的估计及总体方差的估计【解】分组数据用组中值作为本组数据的代表。(1)=995,=83475(2)=1040,=90900(3)=1004=85284追踪训练1.若样本,,,...,的平均数,方差,则样本,,,...,的平均数=______20_____,=____0.4_____.2.若,…,的方差为3,则,,…,的方差为12。3.计算下列两组数据的平均数和标准差.甲9.910.39.810.110.410.09.89.7乙10.210.09.510.310.59.69.810.1解:甲的平均数为:0.66标准差:0.21乙的平均数为:10标准差:0.92第9课时方差与标准差分层训练1.以下可以描述总体稳定性的统计量是()(A)样本均值(B)样本中位数(C)样本方差(D)样本最大值x(n)2.已知两个样本数据如下甲9.910.29.810.19.81010.2乙10.19.61010.49.79.910.3则下列选项正确的是()(A)(B)(C)(D)3.设一组数据的方差是,将这组数据的每个数据都乘10,所得到的一组新数据的方差是()(A)0.1(B)(C)10(D)1004.已知…,的方差为2,则2+3,2+3,…,2+3的标准差是___________5.某医院急诊中心关于其病人等待急诊的时间记录如下:等待时间(分钟)[0,5)频数4853用上述分组资料计算得病人平均等待时间的估计值=_______,病人等待时间标准差的估计值s=___________6.已知样本99,100,101,x,y的平均数是100,方差是2,则=________7.(1)美国加利福尼亚州州长提出给所有的州政府雇员月薪增加70美元。这对于州政府雇员的平均月薪将会有何影响?对于月薪的标准差呢?(2)整个政府部门的月薪递增5%将对平均月薪有何影响?对于月薪的标准差呢?8.甲、乙两机床同时加工直径为100mm的零件,为检验质量,从中抽取6件测量数据为甲9910098100100103乙9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定。拓展延伸9.假定以下数据是甲、乙两个供货商的交货天数:甲109101011119111010乙88141011107151210估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间比较具有一致性与可靠性。10.已知样本90,83,86,85,83,78,74,73,71,70的方差为,且关于的方程的两根的平方和恰好是,求的值。2019-2020年高中数学6.6《复习课3》教案苏教版必修3【自学评价】1.为了保证分层抽样时,每个个体等可能抽取,必须(D)A.每层的个体数相等B.每层中抽的个体数相等C.不同的层中,每个个体被抽到的可能性不相等D.每层等可能抽取的样本个数可能一样,也可能不一样,但每层被抽取的个体数与这一层中个体数的比等于样本容量与总体个数的比2.一个容量为20的样本数据,分组后组据与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70),2.则样本在区间上的频率为(D)A.5%B.25%C.50%D.70%3.对甲、乙两所学校xx年的高考数学成绩进行统计分析,得到的样本的平均分为,,样本的方差为,,由此可知两校考生中成绩较为均衡的是甲校.【精典范例】例1某单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的某种情况,要从中抽取一个容量为20的样本.试用三种方法分别解答.解:(1)随机抽样法:将160人从1~160编上号,并用相同质量的材料制成160个大小完全相同的签,放进箱中搅拌,然后从中抽20个签,与签号相同的20人被选出即中.(2)系统抽样法:将160人从1~160编上号,按编号顺序平均分成20组(1~8号,9~16号,...,153~160号),先从第一组中用抽签法抽出第号(),其余组的号()亦被抽样,即得20人的一个样本.(3)分层抽样法:按20:160=1:8的比例,从业务人员、管理人员、后勤服务人员中分别用抽签的方式依次抽取12人、5人、3人,把他们合在一起得到20人的一个样本.例2从高三学生中抽取50名同学参加知识竞赛,成绩分组及各组的频数如下:(单位:分)[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8(1)列出样本频率分布表(含累积频率);(2)画出频率分布直方图;(3)估计成绩在[60,90)内学生的频率;解:(1)频率分布表如下:成绩分组频数频率累计频率[40,50)20.040.04[50,60)30.060.10[60,70)100.200.30[70,80)150.300.60[80,90)120.240.84[90,100)80.161.00合计501.00(2)频率直方图如下:(3)成绩在[60,90)内的学生比例为74%;例3为检查一批钢筋抗拉强度,抽样得到该指标的一个容量为20的样本:110,120,120,125,125,125,125,130,135,135,100,115,120,125,125,125,125,130,145,145.(1)计算平均抗拉强度系数和标准差;(2)估计这批钢筋有多少落入平均数与2倍标准差的范围内.解:(1)由题意可得,=125.25,s=10.182.(2)落入即(104.88,145.62)范围内的数据为95%.例4一台机器由于使用时间较长,生产的零件有一些会有缺损.按不同转速生产出来的零件有缺损的统计数据如下:转速(转/s)1614128每小时生产有缺损零件数(件)11985(1)作出散点图;(2)如果与线性相关,求线性回归方程;(3)如果实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么机器运转速度应控制在什么范围内?解:(1)散点图如下:(2)设线性回归方程为.由题意可得,,,,.所以2438412.58.250.73660412.5b,..(3)令,得,故机器运转速度控制在15转/s范围内.【追踪训练】1.把一个容量为100的样本分成若干组,已知某组的频率为0.3,那么该组的频数为_____30_
本文标题:2019-2020年高中数学6.3.2《方差与标准差》教案苏教版必修3
链接地址:https://www.777doc.com/doc-1389299 .html