您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 一次函数一对一辅导讲义
教学目标1.通过复习进一步掌握如下概念:函数的概念;一次函数的概念;一次函数与正比例函数的关系;确定一次函数表达式。2、经历函数、一次函数(正比例函数)概念的抽象概括过程,进一步发展学生的抽象思维能力。重点、难点使学生进一步理解一次函数的概念,会熟练地运用待定系数法求一次函数的解析式。考点及考试要求考点1:确定自变量的取值范围考点2:函数图象考点3:图象与坐标轴围成的面积问题考点4:求一次函数的表达式,确定函数值考点5:利用一次函数解决实际问题教学内容第一课时一次函数知识盘点一、主要知识点:一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0)(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。4.k,b与函数图像所在象限:y=kx时当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线必通过原点,经过一、三象限当b<0时,直线必通过三、四象限。y=kx+b时:当k0,b0,这时此函数的图象经过一,二,三象限。当k0,b0,这时此函数的图象经过一,三,四象限。当k0,b0,这时此函数的图象经过二,三,四象限。当k0,b0,这时此函数的图象经过一,二,四象限。特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。一次函数在生活中的应用1.当时间t一定,距离s是速度v的一次函数。s=vt。2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft二、例题讲解【类型一】利用一次函数的定义例1.当m为何值时,函数)4m(x)2m(y3m2是一次函数?练习:①当m=______时,5x4x)3m(y1m2是一次函数。②已知函数1kxx)2k(y,当=_____时,它是一次函数;当=______时,它是正比例函数.【类型二】待定系数法确定一次函数的解析式例2.已知y是关于x的一次函数,且当x=3时,y=-2,当x=-2时,y=5,求这个一次函数的解析式.例3.已知y+b与x+a(其中a、b是常数)成正比.(1)试说明:y是x的一次函数;(2)若x=3时,y=5;x=2时,y=2,求函数的表达式.练习:①已知y是关于x的一次函数,且当x=-2时,y=-3,当x=1时,y=3,求这个一次函数的解析式.并求x=-5时的函数值.②若y与(x-3)成正比例,且x=4时,y=-1,则y与x的函数关系式是什么?【类型三】应用一次函数解决实际问题例4.某弹簧的自然长度为9厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加2厘米。(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克012345[来源:Z。xx。k.Com]y/厘米[来源:Zxxk.Com](2)你能写出x与y之间的关系式吗?第二课时一次函数重要考点(1)考点1:一次函数的概念.相关知识:一次函数是形如ykxb(k、b为常数,且0k)的函数,特别的当0b时函数为)0(kkxy,叫正比例函数.【例题】1.下列函数中,y是x的正比例函数的是()A.y=2x-1B.y=3xC.y=2x2D.y=-2x+12.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.3.已知一次函数kxky)1(+3,则k=.4.函数nmxmyn12)2(,当m=,n=时为正比例函数;当m=,n时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(kbkxy的图象是一条直线,图象位置由k、b确定,0k直线要经过一、三象限,0k直线必经过二、四象限,0b直线与y轴的交点在正半轴上,0b直线与y轴的交点在负半轴上.【例题】1.直线y=x-1的图像经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.一次函数y=3x+2的图象不经过第象限.4.一次函数2yx的图象大致是()5.关于x的一次函数y=kx+k2+1的图像可能是()6.已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是().A.-2B.-1C.0D.27.若一次函数mxmy23)12(的图像经过一、二、四象限,则m的取值范围是.8.已知一次函数y=mx+n-2的图像如图所示,则m、n的取值范围是()A.m>0,n<2B.m>0,n>2C.m<0,n<2D.m<0,n>29.已知关于x的一次函数ymxn的图象如图所示,则2||nmm可化简为____.10.如果一次函数y=4x+b的图像经过第一、三、四象限,那么b的取值范围是__。考点3:一次函数的增减性相关知识:一次函数)0(kbkxy,当0k时,y随x的增大而增大,当0k时,y随x的增大而减小.规律总结:从图象上看只要图象经过一、三象限,y随x的增大而增大,经过二、四象限,y随x的增大而减小.【例题】1.写出一个具体的y随x的增大而减小的一次函数解析式2.一次函数y=-2x+3中,y的值随x值增大而_______.(填“增大”或“减小”)3.已知关于x的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y随x的增大而减小,则k的取值范围是________.4.若一次函数22xmy的函数值y随x的增大而减小,则m的取值范围是()A.0mB.0mC.2mD.2m5.已知点A(-5,a),B(4,b)在直线y=-3x+2上,则ab。(填“>”、“<”或“=”号)6.当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9C.y>9D.y≤97.已知一次函数的图象经过点(0,1),且满足y随x增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).考点4:函数图象经过点的含义相关知识:函数图象上的点是由适合函数解析式的一对x、y的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x,纵坐标代y,方程成立。【例题】1.已知直线ykxb经过点(,3)k和(1,)k,则k的值为().A.3B.3C.2D.22.坐标平面上,若点(3,b)在方程式923xy的图形上,则b值为何?A.-1B.2C.3D.93.一次函数y=2x-1的图象经过点(a,3),则a=.4.在平面直角坐标系xOy中,点P(2,a)在正比例函数12yx的图象上,则点Q(35aa,)位于第_____象限.5.直线y=kx-1一定经过点().A.(1,0)B.(1,k)C.(0,k)D.(0,-1)7.如图所示的坐标平面上,有一条通过点(-3,-2)的直线L。若四点(-2,a)、(0,b)、(c,0)、(d,-1)在L上,则下列数值的判断,何者正确?()A.a=3B.b>-2C.c<-3D.d=2考点5:函数图象与方程(组)相关知识:两个函数图象的交点坐标就是两个解析式组成的方程组的解。1.点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标.2.如表1给出了直线l1上部分点(x,y)的坐标值,表2给出了直线l2上部分(x,y)的坐标值.那么直线l1和直线l2交点坐标为.3.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220xyxy的解是________。4.如图,已知baxy和kxy的图象交于点P,根据图象可得关于X、Y的二元一次方程组00ykxbyax的解是.第三课时一次函数重要考点(2)考点6:图象的平移【例题】1.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x-1C.y=xD.y=x-22.将直线2yx向右平移1个单位后所得图象对应的函数解析式为()A.21yxB.22yxC.21yxD.22yx3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4B.8C.16D.82表1表2ABCOyxxyBAOxxyBAOx考点7:函数图象与不等式(组)相关知识:函数图象上的点是由适合函数解析式的一对x、y的值组成的(x、y),x的值是点的横坐标,纵坐标就是与这个x的值相对应的y的值,因此,观察x或y的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。【例题】1.如图所示,函数xy1和34312xy的图象相交于(-1,1),(2,2)两点.当21yy时,x的取值范围是()A.x<-1B.—1<x<2C.x>2D.x<-1或x>22.点A(1x,1y)和点B(2x,2y)在同一直线ykxb上,且0k.若12xx,则1y,2y的关系是:()A、12yyB、12yyC、12yyD、无法确定.3.已知一次函数3kxy的图象如图所示,则不等式03kx的解集是。4.如图,一次函数0ykxbk的图象经过点A.当3y时,x的取值范围是.5.如图5,直线1l:1xy与直线2lnmxy相交于点P)2,(a,则关于x的不等式1x≥nmx的解集为。(图6)xyBAOx图56.如图6,直线y=kx+b经过A(-1,1)和B(-7,0)两点,则不等式0<kx+b<-x的解集为_.考点8:一次函数解析式的确定【例题】1.已知y+m与x+n成正比例(m,n为常数)。(1)试说明y是x的一次函数(2)当x=-3时,y=5,当x=2时,y=2,求y与x之间的函数关系式。2.已知Y与X成正比例,Z与X成正比例,当Z=3时,Y=-1;当X=2/3时,Z=4,则Y与X的函数关系式为?3.如图,直线l过A、B两点,A(0,1),B(1,0),则直线l的解析式为.4.已知一次函数y=kx+b的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.考点9:与一次函数有关的几何探究问题(动点)【例题】1.如图6,在平面直角坐标系中,直线4:43lyx分
本文标题:一次函数一对一辅导讲义
链接地址:https://www.777doc.com/doc-1203442 .html