您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 实数《立方根》教学反思【参考4篇】
好文供参考!1/11实数《立方根》教学反思【参考4篇】【引读】这篇优秀的文档“实数《立方根》教学反思【参考4篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!实数《立方根》教学反思【第一篇】设计着重于把立方根与开立方和平方根与开平方进行类比教学。注重概念的形成过程。让学生在新概念的形成过程中,逐步理解新概念。通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念,让学生通过具体实例和抽象类比来理解立方根与平方根概念的联系与区别。本节课的教学处理上采用新课程标准,教学方法上体现了“创设情境—提出问题—建立模型—解决问题”的思路,在实际教学中采用了学生自主学习的教学方式。在导入新课时,首先复习了平方根的相关知识:平方根的定义、表示方法、性质及开平方等,板书加以体现。此外设计了一道实际问题:一个正方体的体积是8立方厘米,求这个立方体的棱长。引出2是8的立方根,以此引出课题《立方根》。接下来用类比的方式给出了立方根的定义以及开立方,然后由几个具体实例探究得出了立方根的特点以及立方根与平方根的不同点。好文供参考!2/11学习过程是学生运用已有的知识和经验,对面临的新知识进行分析、类比,然后把它纳入原有知识体系的过程。本节课的重点是:立方根的概念和求立方根的运算。教学时以平方根作为建立新旧知识联系的结合点,做到以旧引新,新旧结合,通过立方根的概念与平方根的概念的类比,让学生感受知识发生、发展的过程,引导学生将新知纳入已有的知识结构。在实际的课堂教学中,紧紧抓住学生已经熟悉和掌握的知识,引发学生的思维,激发学生学习的内在动力,学生的学习积极性得到有效调动,体现学生是课堂的主人。通过设置问题情境,将实际问题转化为数学问题,让学生在解决实际问题中获得新知,再用所学的`知识进一步解决实际问题,培养了学生学数学、爱数学、用数学的意识,从中让学生充分体会数学来源于生活又服务于生活的真正含义。本节课通过求正方体的棱长,设置问题情境,引入立方根的概念,这个例子缺乏一点趣味,对部分注意力不够集中的同学,没有起到引起无意注意的作用。本节课的教学设计力求体现以学生发展为本的理念,注重调动学生学习能动性积极性。在教学中注意遵循学生的思维规律及认知结构发展变化特点,因势利导,逐步推进,力求使教师的启发引导与学生的思维同步,顺应学生认知结构的发展。通过比较详细地设计师生双边教学活动,学生的主体地位能够得以实现。好文供参考!3/11关于例题和练习的安排是按照由易到难,由简到繁的学习心理和认知规律过程设计的,便于学生循序渐进地掌握知识。为了充分发挥学生的主体作用,激发学生的学习兴趣,在教学中采用提问、合作学习、练习等多种学习方式,营造了良好的课堂氛围,激活了学生的思维,体现了把课堂还给学生的理念。选择性练习中A组练习没有给部分学生带来较大的挑战,应该设计难度更高的B组练习。成功方面:新课从实例“要制作一个容积为8立方米的正方体包装箱,它的棱长是多少?”引入,最后又运用所学知识解决,很好地做到了首尾呼应。新课运用类比的方法由平方根的有关概念给出立方根的有关概念,使学生接受起来自然轻松,运用新知的问题设计也有一定的梯度,让学生在掌握新知的基础上有所提升。缺憾方面:多媒体的使用效率还有待提高,个别教学语言还需推敲,课上老师的话还要精简,在今后的教学中要设计好每一节课,顺应学生的思维发展的需要,认认真真地上好每一节,努力做到每一节课都力求充分体现老师的主导作用和学生的主体地位。立方根【第二篇】一、课题名称§课型好文供参考!4/11新授课时安排1/1二、教学目标1、经历探求立方根的过程,了解立方根、开立方的概念。会用根号表示一个数的立方根,能用立方运算求立方根。2、理解立方根的性质,并会用于进行计算。三、教学重点、难点通过对概念的理解,求立方根四、教学方法讲练结合五、教学手段课前预习三次方运算教学媒体投影仪六、教学过程教学内容教师活动学生活动备注做一做:某化工厂要造一个体积是原来8倍的球形储气罐,问:它的半径是原来的几倍?若体积是原来的4倍呢?完成下面的表格(可用计算器)a12345610┄na3类比平方根的定义,若x3=a,你能给x起一个名吗?如果一个数x的立方等于a,即x3=a,那么,这个数x好文供参考!5/11就叫做a的立方根。因为(-2/3)3=-8/27,则-2/3是-8/27的立方根。你能举出三种不同类型的数的立方根吗?(正数、0、负数)做一做1、2的立方等于多少?是否有其他数的立方也等于8?由此可得8的立方根有几个?是多少?2、-3的立方等于多少?是否有其他数的立方等于-27?有此可得-27的立方根有几个?是多少?议一议1、正数由几个立方根?2、0有几个立方根?3、负数呢?4、由此可得,一个数由几个立方根?通过自主探索辅以小组讨论,归纳总结出:每个数都有一个立方根。正数的立方根是正数,0的立方根是0,负数的立方根是负数。思考后小组讨论1、立方根的表示(1)类比平方根的表示,你能表示出一个数a的立方根吗?(2)读作“三次根号a”,例如,8的立方根是2,表示为=2;7的立方根表示为。你能举出几个数的立方根并用符号表示出来吗?3、开立方(1)类比开平方,你能给开立方下一个定义吗?其中a叫做什么?学生:试叙述:求一个数立方根的运算叫做开立方。其中a叫做被开方数。(2)你能谈谈你对开立方的认识吗?学生:各抒己见。(至少两点:①它是一种运算,而不是结果;②它与立方互为逆运算。)例1求下列各数的立方根:(1)-27;(2);(3);(4)-5解:(1)因为(-3)3=-27,所以-27的立方好文供参考!6/11根是-3,即:=-3;(2)因为=,所以的立方根是,即:=;(3)因为=,所以的立方根是,即:=;(4)-5的立方根是。想一想:表示a的立方根,那么()3=?3呢?七、练习设计八、板书设计总结给出()3=a;3=a的原因及验证方法。根据这两个公式做例2,可先让优生口述一个题的步骤和结果以及依据。例2:求下列各式的值①②③-④()3课题做一做议一议想一想课堂练习九、教学反思本节课内容较多,尤其是公式()3=a,3=a的理解及应用要牢固。立方根【第三篇】立方根教学目标:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根。2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。3.了解立方根的性质。4.区分立方根与平方根的不同。(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想。2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非。(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把好文供参考!7/11一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成。教学重点:立方根的概念。教学难点:1.正确理解立方根的概念。2.会求一个数的立方根。3.区分立方根与平方根的不同之处。教学方法:类比学习法。教学过程:ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?ⅱ.新课讲解1.请大家先回忆平方根的定义。下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言。[生甲]我认为这位同学回答得不对。如果x2=a,则x=±,x3=a时,x=±也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确。[师]大家的分析非常有好文供参考!8/11道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cuberoot;也叫三次方根)如2是8的立方根,记为x=,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义。[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根。[师]对。正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系。[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别。[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,好文供参考!9/11另一个是立方。[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零。[生]它们的表示方法和读法不同,一个正数a的平方根表示为±,立方根表示为.下面我再系统地总结一下:平方根与立方根的联系与区别。联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果。区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根。”(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根。(3)表示法不同正数a的平方根表示为±,a的立方根表示为.(4)被开方数的取值范围不同±中的被开方数a是非负数;中的被开方数可以是任何数。2.例题讲解[例1]求下列各数的立方根:(1)-27;(2);(3);(4)-5.[师]请大家思考下列问题。表示a的立方根,则()3等于什么?等于什么?大家可以先举例后找规律。:()3=a.又∵a3是a的立方,所以a3的立方根就是a,所以=a.下面就这两个式子进行练习。[例2]求下列各式的值:(1);(2);(3)-;(4)()3ⅲ.课堂练习(一)随堂练习1.求下列各式的值:.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x厘米,得(二)补充练习好文供参考!10/111.求下列各数的立方根:0,1,-,6,-,求下列各式的值:3.下列说法对不对?-4没有立方根;1的立方根是±1;的立方根是;-5的立方根是-;64的算术平方根是ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体。现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a,后来的正方体的棱长为b,得na3=b3∴∴b=.即后来的棱长变为原来的倍。ⅴ.课时小结1.立方根的定义。2.立方根的性质。3.开立方的定义。4.平方根与立方根的区别与联系。5.会求一个数的立方根。ⅵ.课后作业习题ⅶ.活动与
本文标题:实数《立方根》教学反思【参考4篇】
链接地址:https://www.777doc.com/doc-11986504 .html