您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《多边形的内角和》教案精编5篇
参考资料,少熬夜!《多边形的内角和》教案精编5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“《多边形的内角和》教案精编5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《多边形的内角和》教案1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。2.了解四边形的不稳定性及它在实际生产,生活中的应用。(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。2.通过推导四边形内角和定理,对学生渗透化归思想。3.会根据比较简单的条件画出指定的四边形。4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。第2课时七、教学步骤参考资料,少熬夜!复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9,求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的。四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为.求.(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法。即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和。(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的.②在的两边上截取.③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d点。④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定。③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性。教师指出,“不稳定”是四边形的一个重要性质,还应使参考资料,少熬夜!学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变。②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据。(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育。总结、扩展1.小结:(1)四边形外角概念、外角和定理。(2)四边形不稳定性的应用和克服不稳定性的理论根据。2.扩展:如图4-15,在四边形abcd中,,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中,,是四边形的外角,且,则度。(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角。《多边形的内角和》教案2一、教材分析1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。二、教学目标分析1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。参考资料,少熬夜!4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。三、教法和学法分析本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。四、教学过程分析五、评价分析1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。六、设计说明1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。2、关于教材处理本教案设计时,我对教材作了如下改变:①将教材例1作为练习中的“想一想”,由学生自已尝试解答;②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科参考资料,少熬夜!个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!《多边形的内角和》教案3一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。2.了解四边形的不稳定性及它在实际生产,生活中的应用。(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。2.通过推导四边形内角和定理,对学生渗透化归思想。3.会根据比较简单的条件画出指定的四边形。4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。第一课时七、教学步骤复习引入参考资料,少熬夜!在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。引入新课用投影仪打出课前画好的教材中p119的图。师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).讲解新课1.四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形。(2)要与三角形类比。(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系。(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理教师问:(1)在图4-3中对角线ac把四边形abcd分成几个三角形?(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。我们知道,三角形内角和等于180°,那么四边形的内角和就等于:①2×180°=360°如图4—6;②4×180°-360°=360°如图4-7.例1已知:如图4—8,直线于b、于c.求证:(1);(2).本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出。参考资料,少熬夜!总结、扩展1.四边形的有关概念。2.四边形对角线的作用。3.四边形内角和定理。八、布置作业教材p128中1(1)、2、3.九、板书设计四边形(一)四边形有关概念四边形内角和例1十、随堂练习教材p122中1、2、3.《多边形的内角和》教案4《多边形的内角和》教案教学任务分析教学目标知识目标了解多边形的内角和与外角和公式,进一步了解转化的数
本文标题:《多边形的内角和》教案精编5篇
链接地址:https://www.777doc.com/doc-11484124 .html