您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三数学教学设计【汇集4篇】
参考资料,少熬夜!初三数学教学设计【汇集4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“初三数学教学设计【汇集4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初三数学教案【第一篇】一、教学目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例体会反证法的含义。二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。三、教学方法:观察法。四、教学过程:复习:1、什么是等腰三角形?2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理本套教材选用如下命题作为公理:1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边夹角对应相等的两个三角形全等;(SAS)4、两角及其夹边对应相等的两个三角形全等;(ASA)5、三边对应相等的两个三角形全等;(SSS)6、全等三角形的对应边相等,对应角相等。由公理5、3、4、6可容易证明下面的推论:推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A+∠B+∠C=180°,参考资料,少熬夜!∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F又∵BC=EF(已知)∴△ABC≌△DEF(ASA)定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。初三数学教案【第二篇】一、概念:三、例1----------四、特殊角的正余弦值-------------------------------------------------------二、范围:------------------五、例2------------正弦和余弦(三)一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课参考资料,少熬夜!根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=,求cos55°;(3)已知cos47°6′=,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:(2)已知sin35°=,则cos______=.(3)cos47°6′=,则sin______=,以培养学生思维能力.参考资料,少熬夜!为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=,求cos22°42′;(3)已知cos4°24′=,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业教材习题组4、5.五、板书设计初三数学教案【第三篇】第一课时素质教育目标(一)知识教学点1.使学生初步了解统计知识是应用广泛的数学内容。2.了解平均数的意义,会计算一组数据的平均数。3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数。(二)能力训练点培养学生的观察能力、计算能力。(三)德育渗透点1.培养学生认真、耐心、细致的学习态度和学习习惯。2.渗透数学来源于实践,反地来又作用于实践的观点。(四)美育渗透点通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美。重点·难点·疑点及解决办法1.教学重点:平均数的概念及其计算。2.教学难点:平均数的简化计算。3.教学疑点:平均数简化公式的应用,a如何选择。4.解决办法:分清两个公式,公式②的运用要选择一个适当的a。教学步骤(一)明确目标在日常生活中,我们常与数据打交道,例如,电视台每天参考资料,少熬夜!晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲78686591074乙95787686771.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.(二)整体感知解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.(三)教学过程这节课我们首先来学习平均数.1.(出示幻灯片)请同学看下面问题:某班第一小组一次数学测验的成绩如下:869110072938990857595这个小组的平均成绩是多少?教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识。2.平均数的概念及计算公式一般地,如果有n个数。那么①叫做这n个数的平均数,读作“x拨”。这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法。学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性。教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义。参考资料,少熬夜!3.平均数计算公式①的应用例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温。让学生动手计算,以巩固平均数计算公式(一名学生板演)教师应强调:①解题格式。②在统计学里处理的数据包括负数。③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同。例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):210208200205202218206214215207195207218192202216185227187215计算它们的平均质量。(用投影仪打出)引导学生两人一组完成计算,然后一起对答案。由于数据较大,计算较繁,可能会出现不同的答案。正好为下面提出简化计算公式作好铺垫。教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法。学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样。讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同。通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受。3.推导公式②一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,那么,因此,即②为了加深学生对公式②的认识,再让学生指出例2的、、各是什么?(学生回答)课堂练习:教材P148中~P149中1,2,3(四)
本文标题:初三数学教学设计【汇集4篇】
链接地址:https://www.777doc.com/doc-11245354 .html