您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 精品解析:2022年山东省烟台市中考数学真题(解析版)
2022年山东省烟台市中考数学真题一、选择题1.﹣8的绝对值是()A.18B.8C.﹣8D.±8【答案】B【解析】【分析】正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.【详解】解:∵﹣8是负数,﹣8的相反数是8∴﹣8的绝对值是8.故选B.【点睛】本题考查绝对值的定义,理解绝对值的意义是解题的关键.2.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】A.既是轴对称图形,又是中心对称图形,故A符合题意;B.是轴对称图形,不是中心对称图形,故B不符合题意;C.不是轴对称图形,是中心对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不符合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.下列计算正确的是()A.2a+a=3a2B.a3•a2=a6C.a5﹣a3=a2D.a3÷a2=a【答案】D【解析】【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法法则,进行计算逐一即可解答.【详解】解:A、2a+a=3a,故A不符合题意;B、a3•a2=a5,故B不符合题意;C、a5与a3不能合并,故C不符合题意;D、a3÷a2=a,故D符合题意;故选:D.【点睛】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键.4.如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是()A.B.C.D.【答案】A【解析】【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.5.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形【答案】C【解析】【分析】设这个外角是x°,则内角是3x°,根据内角与它相邻的外角互补列出方程求出外角的度数,根据多边形的外角和是360°即可求解.【详解】解:∵一个正多边形每个内角与它相邻外角的度数比为3:1,∴设这个外角是x°,则内角是3x°,根据题意得:x+3x=180°,解得:x=45°,360°÷45°=8(边),故选:C.【点睛】本题考查了多边形的内角和外角,根据内角与它相邻的外角互补列出方程是解题的关键.6.如图所示电路图,同时闭合两个开关能形成闭合电路的概率是()A.13B.23C.12D.1【答案】B【解析】【分析】画树状图,共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,再由概率公式求解即可.【详解】解:把S1、S2、S3分别记为A、B、C,画树状图如下:的共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,即AB、AC、BA、CA,∴同时闭合两个开关能形成闭合电路的概率为4263.故选:B.【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比,列出树状图是解题的关键.7.如图,某海域中有A,B,C三个小岛,其中A在B南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70°B.北偏东75°C.南偏西70°D.南偏西20°【答案】A【解析】【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C=75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC的度数,即可解答.【详解】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A.的.【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.8.如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为()A.(22)5B.(22)6C.(2)5D.(2)6【答案】C【解析】【分析】根据勾股定理得出正方形的对角线是边长的2,第1个正方形的边长为1,其对角线长为2;第2个正方形的边长为2,其对角线长为22;第3个正方形的边长为22,其对角线长为32;•••;第n个正方形的边长为12n.所以,第6个正方形的边长52.【详解】解:由题知,第1个正方形的边长1AB,根据勾股定理得,第2个正方形的边长2AC,根据勾股定理得,第3个正方形的边长22CF,根据勾股定理得,第4个正方形的边长32GF,根据勾股定理得,第5个正方形的边长42GN,根据勾股定理得,第6个正方形的边长52.故选:C.【点睛】本题主要考查勾股定理,根据勾股定理找到正方形边长之间的2倍关系是解题的关键.9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③【答案】D【解析】【分析】根据对称轴、开口方向、与y轴交点位置即可判断a、b、c与0的大小关系,然后将由对称可知a=b,从而可判断答案.【详解】解:①由图可知:a>0,c<0,2ba<0,∴b>0,∴abc<0,故①不符合题意.②由题意可知:2ba=12,∴b=a,故②符合题意.③将(﹣2,0)代入y=ax2+bx+c,∴4a﹣2b+c=0,∵a=b,∴2a+c=0,故③符合题意.④由图象可知:二次函数y=ax2+bx+c的最小值小于0,令y=1代入y=ax2+bx+c,∴ax2+bx+c=1有两个不相同的解,故④不符合题意.故选:D.【点睛】本题考查二次函数的图像与系数的关系,解题的关键是正确地由图象得出a、b、c的数量关系,本题属于基础题型.10.周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系的中,父子二人离同一端的距离s(米)与时间t(秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.24【答案】B【解析】【分析】先求出二人速度,即可得20分钟二人所跑路程之和,再总结出第n次迎面相遇时,两人所跑路程之和(400n﹣200)米,列方程求出n的值,即可得答案.【详解】解:由图可知,父子速度分别为:200×2÷120103(米/秒)和200÷100=2(米/秒),∴20分钟父子所走路程和为102060264003(米),父子二人第一次迎面相遇时,两人所跑路程之和为200米,父子二人第二次迎面相遇时,两人所跑路程之和为200×2+200=600(米),父子二人第三次迎面相遇时,两人所跑路程之和为400×2+200=1000(米),父子二人第四次迎面相遇时,两人所跑路程之和为600×2+200=1400(米),…父子二人第n次迎面相遇时,两人所跑路程之和为200(n﹣1)×2+200=(400n﹣200)米,令400n﹣200=6400,解得n=16.5,∴父子二人迎面相遇的次数为16.故选:B.【点睛】本题考查一次函数的应用,解题的关键是求出父子二人第n次迎面相遇时,两人所跑路程之和400200n米.二、填空题11.将24x因式分解为________.【答案】22xx【解析】【分析】利用平方差公式可进行因式分解.【详解】解:2422xxx,故答案为:22xx.【点睛】本题考查了公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.12.观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为_____.【答案】(4,1)【解析】【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:“帅”所在的位置:(4,1),故答案为:(4,1).【点睛】本题主要考查了坐标确定位置,正确得出原点位置是解题的关键.13.如图,是一个“数值转换机”的示意图.若x=﹣5,y=3,则输出结果为_____.【答案】13【解析】【分析】根据题意可得,把5x,3y代入2012xy进行计算即可解答.【详解】解:当5x,3y时,2200111532613222xy.故答案为:13.【点睛】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.14.小明和同学们玩扑克牌游戏.游戏规则是:从一副扑克牌(去掉“大王”“小王”)中任意抽取四张,根据牌面上的数字进行混合运算(每张牌上的数字只能用一次),使得运算结果等于24.小明抽到的牌如图所示,请帮小明列出一个结果等于24的算式_____.【答案】(5-3+2)×6(答案不唯一)【解析】【分析】根据有理数的加、减、乘、除、乘方运算法则,进行计算即可解答.【详解】解:由题意得:(5-3+2)×6=24,故答案为:(5-3+2)×6(答案不唯一).【点睛】本题考查了有理数的混合运算,熟练掌握有理数的加、减、乘、除、乘方运算法则是解题的关键.15.如图,A,B是双曲线y=kx(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为_____.【答案】6【解析】【分析】应用k的几何意义及中线的性质求解.【详解】解:D为AC的中点,AOD的面积为3,AOC的面积为6,所以122km,解得:m=6.故答案为:6.【点睛】本题考查了反比例函数中k的几何意义,关键是利用AOB的面积转化为三角形AOC的面积.16.如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为_____.【答案】23【解析】【分析】根据抛物线的对称性知,BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,则此时BF=3,AB=2BF,即可解决问题.【详解】解:∵抛物线的顶点为(2,3),过点(0,0),∴x=4时,y=0,∴BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,∵3=2FH,∴FH=32,∵∠ABC=60°,∴BF=32sin60=3,∵DE∥AB,∴AB=2BF=23,故答案为:23.【点睛】本题主要考查了动点的函数图象问题,抛物线的对称性,平行四边形的性质,特殊角的三角函数值等知识,求出BC=4是解题的关键.三、解答题17.求不等式组231,13(1)2(1)xxxx的解集,并把它的解集表示在数轴上.【答案】1≤x<4,数轴见解析【解析】【分析】分别求出每一个不等式的解集,再求出其公共部分即可.【详解】解:23113(1)2(1)xxxx①②,由①得:1x,由②得:4x,不等式组的解集为:14x,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:精品解析:2022年山东省烟台市中考数学真题(解析版)
链接地址:https://www.777doc.com/doc-11176245 .html