您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 数学九年级上教案【最新4篇】
参考资料,少熬夜!数学九年级上教案【最新4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“数学九年级上教案【最新4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!数学九年级上教案【第一篇】活动目标1、尝试实验,获得有关容量守恒的经验。2、乐意动手动脑探究水的变化,了解它的主要特性。活动准备1、趣味练习:容量比较)2、标有刻度的瓶子,水,记录纸,笔。活动过程一、观察提问1.出示趣味练习:容量比较教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?小结:现在我们想办法做一下实验,比较一下水的多少吧。二、实验操作1、教师:用什么办法验证呢?怎么操作?要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。2、记录实验结果(1)高矮不同的两只瓶子方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。原来瓶子的高矮是不影响水的多少的。(2)粗细不同的两只瓶子小选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,比较出饮料一样多原来瓶子的粗细是不影响水的多少的。(3)一只含内容物的的瓶子内容物为石子方法是取出瓶中石子,比较水位的高低。内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。参考资料,少熬夜!原来瓶子里面是否有物体是不影响水的多少的。3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。三、活动延伸想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?回去试试看吧!最新九年级上册数学教案【第二篇】一、目的以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。同时通过本学期的课堂教学,完成九年级上册数学教学任务。并根据实际情况,适当完成九年级下册新授教学内容。二、知识技能目标掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。三、教材分析第二十一章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。第二十三章旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。本章的重点是中心对称的概念、性质与作图。本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。第二十四章圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系……。本章内容知识点多,而且都比较复杂,是整个初中几何中最难的一个教学内容。第二十五章概率初步:理解概率的意义及其在生活参考资料,少熬夜!中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。四、教学措施1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。对于少部分学生存在的问题进行小组辅导,突破难点。4、做好学生的思想教育工作,促进学生学习的积极性,从而提高学生的`学习成绩。九年级上册数学教案【第三篇】一元二次方程1、通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。2、了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解。重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题。难点一元二次方程及其二次项系数、一次项系数和常数项的识别。活动1复习旧知1、什么是方程?你能举一个方程的例子吗?2、下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式。(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13、下列哪个实数是方程2x-1=3的解?并给出方程的解的概念。活动2探究新知根据题意列方程。1、教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?参考资料,少熬夜!(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程。2、教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3、一个数比另一个数大3,且两个数之积为0,求这两个数。提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4、一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念。1、一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程。2、一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3、一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根)。活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:参考资料,少熬夜!(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程。例2教材第3页例题。例3以-2为根的一元二次方程是()+2x-1=0=0+x+2=0+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等。练习:1、若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2、将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3、教材第4页练习第2题。4、若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:≠1;2.略;3.略;=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题第1~7题。解一元二次方程配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题。提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程。重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想。难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。一、复习引入学生活动:请同学们完成下列各题。参考资料,少熬夜!问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=-2所以,方程的两根x1=-3+2,x2=-3-2解:略。例2市政府计划2年内将人均住房面积由现在的10m2提高到m2,求每年人均住房面积增长率。分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=(1+x)2=直接开平方,得1+x=±即1+x=,1+x=-所以,方程的两根是x1==20%,x2=-因为每年人均住房面积的增长率应为正的,因此,x2=-应舍去。所以,每年人均住房面积增长率应为20%。(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?参考资料,少熬夜!共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。我们把这种思想称为“降次转化思想”。三、巩固练习教材第6页练习。四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的。若p五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0)。如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面
本文标题:数学九年级上教案【最新4篇】
链接地址:https://www.777doc.com/doc-10571052 .html