您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 高三数学重点复习必考知识点整理最新4篇
参考资料,少熬夜!高三数学重点复习必考知识点整理最新4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高三数学重点复习必考知识点整理最新4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高三数学复习知识点【第一篇】基本事件的定义:一次试验连同其中可能出现的每一个结果称为一个基本事件。等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。古典概型:如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件的发生都是等可能的;那么,我们称这个随机试验的概率模型为古典概型。古典概型的概率:如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数m;(4)用公式求出概率并下结论。求古典概型的概率的关键:求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。高三总复习数学知识点【第二篇】1、数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。(2)在数列的定义中并没有规定数列中的数必须参考资料,少熬夜!不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。2、数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。3、数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一。如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循。再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式。(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项。参考资料,少熬夜!(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式。如2的不足近似值,精确到1,,,,,…所构成的数列1,,,,,…就没有通项公式。(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一。4、数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射。因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值。这里的函数是一种特殊的函数,它的自变量只能取正整数。由于数列的`项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式。数列是一种特殊的函数,数列是可以用图象直观地表示的。数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确。把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点。5、递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。高三数学基础复习【第三篇】1、集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列参考资料,少熬夜!举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2、集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3、集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二。命题走向有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。预测20__年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为:(1)题型是1个选择题或1个填空题;(2)热点是集合的基本概念、运算和工具作用三。要点精讲1、集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的`元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写参考资料,少熬夜!在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N_或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。高三数学复习资料【第四篇】1、集合的含义与表示。(1)了解集合的含义、元素与集合的“属于”关系。(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。2、集合间的基本关系。(1)理解集合之间包含与相等的含义,能识别给定集合的子集。(2)在具体情境中,了解全集与空集的含义。3、集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。(3)能使用韦恩(Venn)图表达集合的关系及运算。
本文标题:高三数学重点复习必考知识点整理最新4篇
链接地址:https://www.777doc.com/doc-10427761 .html